Daisy-chain gene drives for the alteration of local populations

Author:

Noble Charleston,Min John,Olejarz Jason,Buchthal Joanna,Chavez Alejandro,Smidler Andrea L.,DeBenedictis Erika A.,Church George M.ORCID,Nowak Martin A.ORCID,Esvelt Kevin M.ORCID

Abstract

If they are able to spread in wild populations, CRISPR-based gene-drive elements would provide new ways to address ecological problems by altering the traits of wild organisms, but the potential for uncontrolled spread tremendously complicates ethical development and use. Here, we detail a self-exhausting form of CRISPR-based drive system comprising genetic elements arranged in a daisy chain such that each drives the next. “Daisy-drive” systems can locally duplicate any effect achievable by using an equivalent self-propagating drive system, but their capacity to spread is limited by the successive loss of nondriving elements from one end of the chain. Releasing daisy-drive organisms constituting a small fraction of the local wild population can drive a useful genetic element nearly to local fixation for a wide range of fitness parameters without self-propagating spread. We additionally report numerous highly active guide RNA sequences sharing minimal homology that may enable evolutionarily stable daisy drive as well as self-propagating CRISPR-based gene drive. Especially when combined with threshold dependence, daisy drives could simplify decision-making and promote ethical use by enabling local communities to decide whether, when, and how to alter local ecosystems.

Funder

Burroughs Wellcome Fund

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

National Science Foundation

DOD | Defense Advanced Research Projects Agency

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3