Cleave and Rescue, a novel selfish genetic element and general strategy for gene drive

Author:

Oberhofer Georg,Ivy Tobin,Hay Bruce A.

Abstract

There is great interest in being able to spread beneficial traits throughout wild populations in ways that are self-sustaining. Here, we describe a chromosomal selfish genetic element,CleaveR[Cleave and Rescue (ClvR)], able to achieve this goal.ClvRcomprises two linked chromosomal components. One, germline-expressed Cas9 and guide RNAs (gRNAs)—the Cleaver—cleaves and thereby disrupts endogenous copies of a gene whose product is essential. The other, a recoded version of the essential gene resistant to cleavage and gene conversion with cleaved copies—the Rescue—provides essential gene function.ClvRenhances its transmission, and that of linked genes, by creating conditions in which progeny lackingClvRdie because they have no functional copies of the essential gene. In contrast, those who inheritClvRsurvive, resulting in an increase inClvRfrequency.ClvRis predicted to spread to fixation under diverse conditions. To test these predictions, we generated aClvRelement inDrosophila melanogaster.ClvRtkois located on chromosome 3 and uses Cas9 and four gRNAs to disruptmelanogaster technical knockout(tko), an X-linked essential gene. Rescue activity is provided bytkofromDrosophila virilis.ClvRtkoresults in germline and maternal carryover-dependent inactivation ofmelanogaster tko(>99% per generation); lethality caused by this loss is rescued by thevirilistransgene;ClvRtkoactivities are robust to genetic diversity in strains from five continents; and uncleavable but functionalmelanogaster tkoalleles were not observed. Finally,ClvRtkospreads to transgene fixation. The simplicity ofClvRsuggests it may be useful for altering populations in diverse species.

Funder

Deutsche Forschungsgemeinschaft

USDA | National Institute of Food and Agriculture

NIH training grant

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference77 articles.

1. A Killer–Rescue system for self-limiting gene drive of anti-pathogen constructs

2. Noble C (2016) Daisy-chain gene drives for the alteration of local populations. bioRxiv:10.1101/057307. Preprint, posted June 7, 2016.

3. Self-limiting population genetic control with sex-linked genome editors

4. Burt A Trivers R (2008) Genes in Conflict: The Biology of Selfish Genetic Elements (Belknap Press, Cambridge, MA), 1st Ed.

5. Braig HR Yan G (2001) The spread of genetic constructs in natural insect populations. Genetically Engineered Organisms: Assessing Environmental and Human Health Effects, eds Letourneau DK Burrows BE (CRC Press, Boca Raton, FL), pp 251–314.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3