From defaults to databases: parameter and database choice dramatically impact the performance of metagenomic taxonomic classification tools

Author:

Wright Robyn J.ORCID,Comeau André M.ORCID,Langille Morgan G.I.ORCID

Abstract

AbstractIn metagenomic analyses of microbiomes, one of the first steps is usually the taxonomic classification of reads by comparison to a database of previously taxonomically classified genomes. While different studies comparing metagenomic taxonomic classification methods have determined that different tools are “best”, there are two tools that have been used the most to-date: Kraken (k-mer based classification against a user-constructed database) and MetaPhlAn (classification by alignment to clade-specific marker genes), the latest versions of which are Kraken2 and MetaPhlAn 3, respectively. We found large discrepancies in both the proportion of reads that were classified as well as the number of species that were identified when we used both Kraken2 and MetaPhlAn 3 to classify reads within metagenomes from human-associated or environmental datasets. We then investigated which of these tools would give classifications closest to the real composition of metagenomic samples using a range of simulated and mock samples and examined the combined impact of tool-parameter-database choice on the taxonomic classifications given. This revealed that there may not be a one-size-fits-all “best” choice. While Kraken2 can achieve better overall performance, with higher precision, recall and F1 scores, as well as alpha- and beta-diversity measures closer to the known composition than MetaPhlAn 3, the computational resources required for this may be prohibitive for many researchers, and the default database and parameters should not be used. We therefore conclude that the best tool-parameter-database choice for a particular application depends on the scientific question of interest, which performance metric is most important for this question and the limit of available computational resources.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3