Assessing the performance of different approaches for functional and taxonomic annotation of metagenomes

Author:

Tamames JavierORCID,Cobo-Simón Marta,Puente-Sánchez Fernando

Abstract

Abstract Background Metagenomes can be analysed using different approaches and tools. One of the most important distinctions is the way to perform taxonomic and functional assignment, choosing between the use of assembly algorithms or the direct analysis of raw sequence reads instead by homology searching, k-mer analysys, or detection of marker genes. Many instances of each approach can be found in the literature, but to the best of our knowledge no evaluation of their different performances has been carried on, and we question if their results are comparable. Results We have analysed several real and mock metagenomes using different methodologies and tools, and compared the resulting taxonomic and functional profiles. Our results show that database completeness (the representation of diverse organisms and taxa in it) is the main factor determining the performance of the methods relying on direct read assignment either by homology, k-mer composition or similarity to marker genes, while methods relying on assembly and assignment of predicted genes are most influenced by metagenomic size, that in turn determines the completeness of the assembly (the percentage of read that were assembled). Conclusions Although differences exist, taxonomic profiles are rather similar between raw read assignment and assembly assignment methods, while they are more divergent for methods based on k-mers and marker genes. Regarding functional annotation, analysis of raw reads retrieves more functions, but it also makes a substantial number of over-predictions. Assembly methods are more advantageous as the size of the metagenome grows bigger.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3