COVID-19 Infection and Transmission Includes Complex Sequence Diversity

Author:

Chan Ernest R.,Jones Lucas D.ORCID,Linger Marlin,Kovach Jeffrey D.ORCID,Torres-Teran Maria M.ORCID,Wertz Audric,Donskey Curtis J.,Zimmerman Peter A.ORCID

Abstract

ABSTRACTSARS-CoV-2 whole genome sequencing has played an important role in documenting the emergence of polymorphisms in the viral genome and its continuing evolution during the COVID-19 pandemic. Here we present data from over 360 patients to characterize the complex sequence diversity of individual infections identified during multiple variant surges (e.g., Alpha and Delta; requiring ≥ 80% genome coverage and ≥100X read depth). Across our survey, we observed significantly increasing SARS-CoV-2 sequence diversity during the pandemic and frequent occurrence of multiple biallelic sequence polymorphisms in all infections. This sequence polymorphism shows that SARS-CoV-2 infections are heterogeneous mixtures. Convention for reporting microbial pathogens guides investigators to report a majority consensus sequence. In our study, we found that this approach would under-report at least 79% of the observed sequence variation. As we find that this sequence heterogeneity is efficiently transmitted from donors to recipients, our findings illustrate that infection complexity must be monitored and reported more completely to understand SARS-CoV-2 infection and transmission dynamics involving both immunocompetent and immunocompromised patients. Many of the nucleotide changes that would not be reported in a majority consensus sequence have now been observed as lineage defining SNPs in Omicron BA.1 and/or BA.2 variants. This suggests that minority alleles in earlier SARS-CoV-2 infections may play an important role in the continuing evolution of new variants of concern.AUTHOR SUMMARYEvolution of the virus causing COVID-19 (SARS-CoV-2) has been associated with significant transmission surges. With evolution of SARS-CoV-2, evidence has accumulated regarding increased transmissibility of lineages, varying severity of illness, evasion of vaccines and diagnostic tests. Continuous tracking of SARS-CoV-2 lineage evolution distills very large and complex viral sequence data sets down to consensus sequences that report the majority nucleotide at each of over 29,000 positions in the SARS-CoV-2 genome. We observe that this eliminates considerable sequence variation and leads to a significant underestimation of SARS-CoV-2 infection diversity and transmission complexity. Additionally, concentration on the majority consensus sequence diverts attention from genetic variation that may contribute significantly to the continuing evolution of the COVID-19 pandemic.

Publisher

Cold Spring Harbor Laboratory

Reference61 articles.

1. A new coronavirus associated with human respiratory disease in China

2. A novel coronavirus associated with a respiratory disease in Wuhan of Hubei province, China [Internet]. January 5, 2020. Available from: https://www.ncbi.nlm.nih.gov/nuccore/1798174254.

3. The Genome Sequence of the SARS-Associated Coronavirus

4. Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome

5. A Novel Coronavirus from Patients with Pneumonia in China, 2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3