Plasticity of the gastrocnemius elastic system in response to decreased work and power demand during growth

Author:

Cox SMORCID,DeBoef AORCID,Salzano MQORCID,Katugam K,Piazza SJORCID,Rubenson JORCID

Abstract

AbstractElastic energy storage and release can enhance performance that would otherwise be limited by the force-velocity constraints of muscle. While functional influence of a biological spring depends on tuning between components of an elastic system (the muscle, spring, driven mass, and lever system), we do not know whether elastic systems systematically adapt to functional demand. To test whether altering work and power generation during maturation alters the morphology of an elastic system, we prevented growing guinea fowl (Numida Meleagris) from jumping. At maturity, we compared the jump performance of our treatment group to that of controls and measured the morphology of the gastrocnemius elastic system. We found that restricted birds jumped with lower jump power and work, yet there were no significant between-group differences in the components of the elastic system. Further, subject-specific models revealed no difference in energy storage capacity between groups, though energy storage was most sensitive to variations in muscle properties (most significantly operating length and least dependent on tendon stiffness). We conclude that the gastrocnemius elastic system in the guinea fowl displays little to no plastic response to decreased demand during growth and hypothesize that neural plasticity may explain performance variation.

Publisher

Cold Spring Harbor Laboratory

Reference102 articles.

1. From bouncy legs to poisoned arrows: elastic movements in invertebrates

2. Flexible mechanisms: the diverse roles of biological springs in vertebrate movement

3. Optimal muscle fascicle length and tendon stiffness for maximising gastrocnemius efficiency during human walking and running

4. Wilson AM , Van den Bogert AJ , McGuigan MP . 2000 Optimization of the muscle-tendon unit for economical locomotion. In Skeletal muscle mechanics: from mechanism to function (ed W Herzog), pp. 517–47. Hoboken, NJ: John Wiley & Sons.

5. The principles of cascading power limits in small, fast biological and engineered systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3