The principles of cascading power limits in small, fast biological and engineered systems

Author:

Ilton Mark1ORCID,Bhamla M. Saad2ORCID,Ma Xiaotian3ORCID,Cox Suzanne M.4ORCID,Fitchett Leah L.4ORCID,Kim Yongjin1ORCID,Koh Je-sung5ORCID,Krishnamurthy Deepak2ORCID,Kuo Chi-Yun4ORCID,Temel Fatma Zeynep5ORCID,Crosby Alfred J.1ORCID,Prakash Manu2ORCID,Sutton Gregory P.6ORCID,Wood Robert J.5ORCID,Azizi Emanuel7ORCID,Bergbreiter Sarah3ORCID,Patek S. N.4ORCID

Affiliation:

1. Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.

2. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

3. Department of Mechanical Engineering and Institute for Systems Research, University of Maryland, College Park, College Park, MD 20742, USA.

4. Department of Biology, Duke University, Durham, NC 27708, USA.

5. School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.

6. School of Biological Sciences, University of Bristol, Bristol BS8 1TH, UK.

7. Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA.

Abstract

Hop, skip, jump, or massive leap In biological and engineered systems, an inherent trade-off exists between the force and velocity that can be delivered by a muscle, spring, or combination of the two. However, one can amplify the maximum throwing power of an arm by storing the energy in a bow or sling shot with a latch mechanism for sudden release. Ilton et al. used modeling to explore the performance of motor-driven versus spring-latch systems in engineering and biology across size scales. They found a range of general principles that are common to animals, plants, fungi, and machines that use elastic structures to maximize kinetic energy. Science , this issue p. eaao1082

Funder

National Science Foundation

John Simon Guggenheim Memorial Foundation

Office of the Royal Society

U. S. Army Research Laboratory and the U. S. Army Research Office

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3