Flexible mechanisms: the diverse roles of biological springs in vertebrate movement

Author:

Roberts Thomas J.1,Azizi Emanuel2

Affiliation:

1. Department of Biology, The College of New Jersey, Ewing, NJ 08628, USA

2. Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA

Abstract

SummaryThe muscles that power vertebrate locomotion are associated with springy tissues, both within muscle and in connective tissue elements such as tendons. These springs share in common the same simple action: they stretch and store elastic strain energy when force is applied to them and recoil to release energy when force decays. Although this elastic action is simple, it serves a diverse set of functions, including metabolic energy conservation, amplification of muscle power output, attenuation of muscle power input, and rapid mechanical feedback that may aid in stability. In recent years, our understanding of the mechanisms and importance of biological springs in locomotion has advanced significantly, and it has been demonstrated that elastic mechanisms are essential for the effective function of the muscle motors that power movement. Here, we review some recent advances in our understanding of elastic mechanisms, with an emphasis on two proposed organizing principles. First, we review the evidence that the various functions of biological springs allow the locomotor system to operate beyond the bounds of intrinsic muscle properties, including metabolic and mechanical characteristics, as well as motor control processes. Second, we propose that an energy-based framework is useful for interpreting the diverse functions of series-elastic springs. In this framework, the direction and timing of the flow of energy between the body, the elastic element and the contracting muscle determine the function served by the elastic mechanism (e.g. energy conservation vs power amplification). We also review recent work demonstrating that structures such as tendons remodel more actively and behave more dynamically than previously assumed.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 288 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3