The meta-gut: Hippo inputs lead to community coalescence of animal and environmental microbiomes

Author:

Dutton Christopher L.ORCID,Subalusky Amanda L.ORCID,Sanchez AlvaroORCID,Estrela SylvieORCID,Lu Nanxi,Hamilton Stephen K.ORCID,Njoroge Laban,Rosi Emma J.ORCID,Post David M.ORCID

Abstract

AbstractAll animals carry specialized microbiomes, and their gut microbiotas in particular are continuously released into the environment through excretion of waste. Here we propose the meta-gut as a novel conceptual framework that addresses the ability of the gut microbiome released from an animal to function outside the host and potentially alter ecosystem processes mediated by microbes. An example considered here is the hippopotamus (hippo) and the pools they inhabit. Hippo pool biogeochemistry and fecal and pool water microbial communities were examined through field sampling and an experiment. Sequencing using 16S RNA methods revealed that the active microbial communities in hippo pools that received high inputs of hippo feces are more similar to the hippo gut microbiome than other nearby aquatic environments. The overlap between the microbiomes of the hippo gut and the waters into which they excrete therefore constitutes a meta-gut system with potentially strong influence on the biogeochemistry of pools and downstream waters. We propose that the meta-gut may be present where other species congregate in high densities, particularly in aquatic environments.SignificanceAnimals can have considerable impacts on biogeochemical cycles and ecosystem attributes through the consumption of resources and physical modifications of the environment. Likewise, microbial communities are well known to regulate biogeochemical cycles. This study links those two observations by showing that the gut microbiome in waste excreted by hippos can persist ex-situ in the environment and potentially alter biogeochemical cycles. This “meta-gut” system may be present in other ecosystems where animals congregate, and may have been more widespread in the past before many large animal populations were reduced in range and abundance.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3