Abstract
AbstractThe growing prevalence and popularity of protein structure data, both experimental and computationally modelled, necessitates fast tools and algorithms to enable exploratory and interpretable structure-based machine learning. Alignment-free approaches have been developed for divergent proteins, but proteins sharing func-tional and structural similarity are often better understood via structural alignment, which has typically been too computationally expensive for larger datasets. Here, we introduce the concept of rotation-invariant shape-mers to multiple structure alignment, creating a structure aligner that scales well with the number of proteins and allows for aligning over a thousand structures in 20 minutes. We demonstrate how alignment-free shape-mer counts and aligned structural features, when used in machine learning tasks, can adapt to different levels of functional hierarchy in protein kinases, pinpointing residues and structural fragments that play a role in catalytic activity.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献