Minimal synthetic enhancers reveal control of the probability of transcriptional engagement and its timing by a morphogen gradient

Author:

Reimer ArmandoORCID,Alamos SimonORCID,Westrum Clay,Turner Meghan A.ORCID,Talledo Paul,Zhao JiaxiORCID,Garcia Hernan GORCID

Abstract

AbstractHow enhancers interpret morphogen gradients to generate spatial patterns of gene expression is a central question in developmental biology. Although recent studies have begun to elucidate that enhancers can dictate whether, when, and at what rate a promoter will engage in transcription, the complexity of endogenous enhancers calls for theoretical models with too many free parameters to quantitatively dissect these regulatory strategies. To overcome this limitation, we established a minimal synthetic enhancer system in embryos of the fruit 2y Drosophila melanogaster. Here, a gradient of the Dorsal activator is read by a single Dorsal binding site. By quantifying transcriptional activity using live imaging, our experiments revealed that this single Dorsal binding site is capable of regulating whether promoters engage in transcription in a Dorsal concentration-speci1c manner. By modulating binding-site aZnity, we determined that a gene’s decision to engage in transcription and its transcriptional onset time can be explained by a simple theoretical model where the promoter has to traverse multiple kinetic barriers before transcription can ensue. The experimental platform developed here pushes the boundaries of live-imaging in studying gene regulation in the early embryo by enabling the quanti1cation of the transcriptional activity driven by a single transcription factor binding site, and making it possible to build more complex enhancers from the ground up in the context of a dialogue between theory and experiment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3