Predictive modeling reveals that higher-order cooperativity drives transcriptional repression in a synthetic developmental enhancer

Author:

Kim Yang JoonORCID,Rhee Kaitlin,Liu JonathanORCID,Jeammet Paul,Turner MeghanORCID,Small StephenORCID,Garcia Hernan G.ORCID

Abstract

AbstractA challenge in quantitative biology is to predict output patterns of gene expression from knowledge of input transcription factor patterns and from the arrangement of binding sites for these transcription factors on regulatory DNA. We tested whether widespread thermodynamic models could be used to infer parameters describing simple regulatory architectures that inform parameter-free predictions of more complex enhancers in the context of transcriptional repression by Runt in the early fruit 2y embryo. By modulating the number and placement of Runt binding sites within an enhancer, and quantifying the resulting transcriptional activity using live imaging, we discovered that thermodynamic models call for higher-order cooperativity between multiple molecular players. This higher-order cooperativity capture the combinatorial complexity underlying eukaryotic transcriptional regulation and cannot be determined from simpler regulatory architectures, highlighting the challenges in reaching a predictive understanding of transcriptional regulation in eukaryotes and calling for approaches that quantitatively dissect their molecular nature.

Publisher

Cold Spring Harbor Laboratory

Reference86 articles.

1. Quantitative model for gene regulation by lambda phage repressor.

2. Bruce Alberts . Molecular biology of the cell. Garland Science, Taylor and Francis Group, New York, NY, sixth edition. edition, 2015. ISBN 9780815344322 (hardcover) 0815344325 (hardcover) 9780815344643 (paperback) 0815344643 (paperback) 9780815345244 (looseleaf) 0815345240 (looseleaf).

3. A model of spatially restricted transcription in opposing gradients of activators and repressors

4. Synthetic enhancer design by in silico compensatory evolution reveals flexibility and constraint in cis-regulation

5. Site-Specific Transformation of Drosophila via ϕC31 Integrase-Mediated Cassette Exchange

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3