Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation

Author:

Song SeungmoonORCID,Kidziński Łukasz,Peng Xue Bin,Ong Carmichael,Hicks Jennifer,Levine Sergey,Atkeson Christopher G.,Delp Scott L.

Abstract

AbstractModeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Despite advances in neuroscience techniques, it is still difficult to measure and interpret the activity of the millions of neurons involved in motor control. Thus, researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This “Learn to Move” competition, which we have run annually since 2017 at the NeurIPS conference, has attracted over 1300 teams from around the world. Top teams adapted state-of-art deep reinforcement learning techniques to produce complex motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research.

Publisher

Cold Spring Harbor Laboratory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Output-Prediction Based Nonlinear Control of a Class of Neuro-Musculoskeletal Systems;2024 American Control Conference (ACC);2024-07-10

2. Self Model for Embodied Intelligence: Modeling Full-Body Human Musculoskeletal System and Locomotion Control with Hierarchical Low-Dimensional Representation;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. Upper Limb and Back Rehabilitation Exoskeleton;2023 IEEE International Conference on Electrical, Automation and Computer Engineering (ICEACE);2023-12-29

4. Deep Reinforcement Learning Based Upper Limb Neuromusculoskeletal Simulator for Modelling Human Motor Control;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

5. ASE;ACM Transactions on Graphics;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3