OpenSim Moco: Musculoskeletal optimal control

Author:

Dembia Christopher L.ORCID,Bianco Nicholas A.,Falisse Antoine,Hicks Jennifer L.,Delp Scott L.

Abstract

AbstractMusculoskeletal simulations of movement can provide insights needed to help humans regain mobility after injuries and design robots that interact with humans. Here, we introduce Open-Sim Moco, a software toolkit for optimizing the motion and control of musculoskeletal models built in the OpenSim modeling and simulation package. OpenSim Moco uses the direct collocation method, which is often faster and can handle more diverse problems than other methods for musculoskeletal simulation but requires extensive technical expertise to implement. Moco frees researchers from implementing direct collocation themselves, allowing them to focus on their scientific questions. The software can handle the wide range of problems that interest biomechanists, including motion tracking, motion prediction, parameter optimization, model fitting, electromyography-driven simulation, and device design. Moco is the first musculoskeletal direct collocation tool to handle kinematic constraints, which are common in musculoskeletal models. To show Moco’s abilities, we first solve for muscle activity that produces an observed walking motion while minimizing muscle excitations and knee joint loading. Then, we predict a squat-to-stand motion and optimize the stiffness of a passive assistive knee device. We designed Moco to be easy to use, customizable, and extensible, thereby accelerating the use of simulations to understand human and animal movement.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3