Live imaging and biophysical modeling support a button-based mechanism of somatic homolog pairing in Drosophila

Author:

Child MyronORCID,Bateman Jack R.ORCID,Jahangiri Amir,Reimer Armando,Lammers Nicholas C.ORCID,Sabouni Nica,Villamarin Diego,McKenzie-Smith Grace C.,Johnson Justine E.,Jost DanielORCID,Garcia Hernan G.ORCID

Abstract

AbstractThe spatial configuration of the eukaryotic genome is organized and dynamic, providing the structural basis for regulated gene expression in living cells. In Drosophila melanogaster, 3D genome organization is characterized by somatic homolog pairing, where homologous chromosomes are intimately paired from end to end; however, the process by which homologs identify one another and pair has remained mysterious. A recent model proposed that specifically interacting “buttons” encoded along the lengths of homologous chromosomes drive somatic homolog pairing. Here, we turned this hypothesis into a precise biophysical model to demonstrate that a button-based mechanism can lead to chromosome-wide pairing. We tested our model and constrained its free parameters using live-imaging measurements of chromosomal loci tagged with the MS2 and PP7 nascent RNA labeling systems. Our analysis showed strong agreement between model predictions and experiments in the separation dynamics of tagged homologous loci as they transition from unpaired to paired states, and in the percentage of nuclei that become paired as embryonic development proceeds. In sum, as a result of this dialogue between theory and experiment, our data strongly support a button-based mechanism of somatic homolog pairing in Drosophila and provide a theoretical framework for revealing the molecular identity and regulation of buttons.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3