Multimodal cell-free DNA whole-genome analysis combined with TET-Assisted Pyridine Borane Sequencing is sensitive and reveals specific cancer signals

Author:

Vavoulis Dimitris,Cutts Anthony,Thota Nishita,Brown Jordan,Sugar Robert,Rueda Antonio,Ardalan Arman,Matos Santo Flavia,Sannasiddappa Thippesh,Miller Bronwen,Ash Stephen,Liu Yibin,Song Chun-Xiao,Nicholson Brian,Dreau Helene,Tregidgo Carolyn,Schuh Anna

Abstract

AbstractThe analysis of circulating tumour DNA (ctDNA) promises to extend current tissue-specific cancer screening programmes to multi-cancer early detection and measurable disease monitoring to solid tumours using minimally invasive blood draws (liquid biopsies). Most studies so far have focussed on using targeted deep sequencing to detect the low-abundance, fragmented ctDNA. A few studies have integrated information from multiple modalities using shallow 1× WGS. Here, we developed an integrated bioinformatics pipeline for ctDNA detection based on whole genome TET-Assisted Pyridine Borane Sequencing (TAPS) of plasma samples sequenced at 80× or higher. We conducted a diagnostic accuracy study in a case-control cohort of patients presenting to the UK National Health Service’s (NHS) primary care pathway with non-specific symptoms of cancer, who either did not have cancer or who were subsequently diagnosed with cancer and referred to surgery with curative intent. TAPS is a base-level-resolution sequencing methodology for the detection of 5-methylcytosines and 5-hydro-methylcytosines. Unlike bisulfite-sequencing, the current established method for mapping epigenetic DNA modifications, TAPS is a non-destructive methodology, which only converts methylated cytosines and preserves DNA fragments over 10 kilobases long, thus opening the possibility of simultaneous methylome and genome analysis on the same sequencing data. The proposed methodology combines copy number aberrations and single nucleotide variants with methylation calls from TAPS-treated plasma from patients with Stage 1-4 colorectal (n=36), oesophageal (n=8), pancreatic (n=6), renal (n=5), ovarian (n=4) and breast (n=2) cancers. Plasma samples from 21 confirmed non-cancer controls were used for data denoising, while plasma samples from 9 additional agematched healthy controls were further used to establish the minimum level of detection. Copy number aberrations, single nucleotide variants, and methylation signals were independently analysed and combined in sample-specific scores, which quantify the levels of plasma ctDNA. Matched tumour samples were used for validation, not for guiding the analysis, imitating an early detection scenario. The detection threshold was set such that specificity was 100%, resulting in sensitivity of 85.2%. In silico experiments on high-fidelity synthetic data suggest excellent discriminatory capacity (AUC > 80%) at ctDNA fractions as low as 0.7%. Furthermore, we demonstrate successful tracking of tumour burden post-treatment and ctDNA shedding in precancerous adenomas in patients with colorectal cancer in the absence of a matched tumour biopsy. In summary, we developed and validated a pipeline for interrogating liquid biopsies using TAPS 80× or higher WGS that is ready for in-depth clinical evaluation both in multi-cancer screening of high-risk individuals and multi-cancer measurable disease monitoring.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3