Large-scale evaluation of an AI system as an independent reader for double reading in breast cancer screening

Author:

Sharma Nisha,Ng Annie Y.,James Jonathan J.,Khara Galvin,Ambrozay Eva,Austin Christopher C.,Forrai Gabor,Glocker Ben,Heindl Andreas,Karpati Edit,Rijken Tobias M.,Venkataraman Vignesh,Yearsley Joseph E.,Kecskemethy Peter D.

Abstract

AbstractScreening mammography with two human readers increases cancer detection and lowers recall rates, but high resource requirements and a shortage of qualified readers make double reading unsustainable in many countries. The use of AI as an independent reader may yield more objective, accurate and outcome-based screening. Clinical validation of AI requires large-scale, multi-site, multi-vendor studies on unenriched cohorts.This retrospective study evaluated the performance of the Mia™ version 2.0.1 AI system from Kheiron Medical Technologies on an unenriched sample (275,900 cases from 177,882 participants) collected across seven screening sites in two countries and four hardware vendors, and is representative of a real-world screening population over 10 years. Performance was determined for standalone AI and simulated double reading to assess non-inferiority and superiority on relevant screening metrics.Standalone AI showed superiority on sensitivity and non-inferiority on specificity while detecting 29.7% of cancers found within three years after screening, and 29.8% of missed interval cancers. Double reading with AI was at least non-inferior compared to human double reading at every metric, with superiority for recall rate, specificity and positive predictive value (PPV). AI as an independent reader reduced the workload, but increased arbitration rate from 3.3% to 12.3%. Applying the AI system under investigation would have reduced the overall number of human reads required by 44.8%. The recall rate was reduced by a relative 4.1%, suggesting there could be fewer follow-up procedures, reduced stress for patients, and less administrative and clinical work.Using the AI system as an independent reader maintains the standard of care of double reading, detects cancers missed by human readers, while automating a substantial part of the workflow, and could therefore bring significant clinical and operational benefits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3