Pleiotropy and Disease Interactors: The Dual Nature of Genes Linking Ageing and Ageing-related Diseases

Author:

Vega Magdaleno Gustavo Daniel,de Magalhaes Joao PedroORCID

Abstract

AbstractAgeing-related diseases (ARDs) exhibit a broad spectrum of phenotypes yet consistently increase in incidence with advancing age. This suggests that, despite their diversity, ARDs could potentially share common biological processes deeply rooted in the mechanisms of ageing, presenting opportunities for unified therapeutic strategies. Using a network approach, we analysed gene proximity to 52 ARDs from the UK Biobank, integrating with protein-protein interaction (PPI), gene coexpression, KEGG pathways, and ageing-related genes. Interestingly, while most ageing-related genes did not associate with ARDs, they were closer to multiple ARDs than random genes. This was mainly due to indirect connections to diverse Communities of ARDs (ARCs), what we calliARC-Interactors, implying indirect association to multiple ARDs through interaction with ARD-related genes, primarily via PPI and KEGG. Genes that are associated with multiple ARCs,i.e.,Pleiotropicgenes, were predominantly related to immunological disorders. We found a polarizing effect. When compared to multiple ageing- and disease-related genes, highPleiotropicgenes showed the highest tissue specificity and lowest coexpression with themselves and other diseases. In contrast, high iARC-interactivegenes (as those of ageing) significantly displayed the exact opposite effects, suggesting two mechanisms for genes to affect multiple ARDs, one operating through modulatory genes that simultaneously affect numerous tissues and processes; and another rather specialised, affecting single tissues that are widespread across the body, as potentially occurring in autoimmune diseases. Lastly, we used Machine Learning (ML) to predict potentially novel ageing-related genes based on each network’siARC-Interactionsand genes’ proximity to ARDs. PPI and KEGG showed the best performance with their top candidate genes enriched for regulation of protein metabolic process, protein stabilization, positive regulation of developmental process, and cellular response to chemical stimulus. This work paints a deeper picture of the multiple types of interactions between ageing-related processes and ARDs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3