Abstract
AbstractMany cellular proteins demix spontaneously from solution to form liquid condensates. These phase-separated systems have wide-ranging roles in health and disease. Elucidating the molecular driving forces underlying liquid–liquid phase separation (LLPS) is therefore a key objective for understanding biological function and malfunction. Here we show that proteins implicated in cellular LLPS, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, which form condensates at low salt concentrations, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that phase separation in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus provides a new view on the cooperation of hydrophobicity and non-ionic interactions as non-specific driving forces for the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates.
Publisher
Cold Spring Harbor Laboratory
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献