Abstract
ABSTRACTNab2encodes a conserved polyadenosine RNA-binding protein (RBP) with broad roles in post-transcriptional regulation, including in poly(A) RNA export, poly(A) tail length control, transcription termination, and mRNA splicing. Mutation of theNab2human orthologZC3H14gives rise to an autosomal recessive intellectual disability, but understanding of Nab2/ZC3H14 function in metazoan nervous systems is limited, in part because no comprehensive identification of metazoan Nab2/ZC3H14-associated RNA transcripts has yet been conducted. Moreover, many Nab2/ZC3H14 functional protein partnerships likely remain unidentified. Here we present evidence thatDrosophila melanogasterNab2 interacts with the RBP Ataxin-2 (Atx2), a neuronal translational regulator, and implicate these proteins in coordinate regulation of neuronal morphology and adult viability. We then present the first high-throughput identifications of Nab2- and Atx2-associated RNAs inDrosophilabrain neurons using an RNA immunoprecipitation-sequencing (RIP-Seq) approach. Critically, the RNA interactomes of each RBP overlap, and Nab2 exhibits high specificity in its RNA associations in neuronsin vivo, associating with a small fraction of all polyadenylated RNAs. The identities of shared associated transcripts (e.g.drk,me31B,stai) and of transcripts specific to Nab2 or Atx2 (e.g.Arpc2,tea, respectively) promise insight into neuronal functions of and interactions between each RBP. Significantly, Nab2-associated RNAs are overrepresented for internal A-rich motifs, suggesting these sequences may partially mediate Nab2 target selection. Taken together, these data demonstrate that Nab2 opposingly regulates neuronal morphology and shares associated neuronal RNAs with Atx2, and thatDrosophilaNab2 associates with a more specific subset of polyadenylated mRNAs than its polyadenosine affinity alone may suggest.
Publisher
Cold Spring Harbor Laboratory