The Disease-Associated ProteinsDrosophilaNab2 and Ataxin-2 Interact with Shared RNAs and Coregulate Neuronal Morphology

Author:

Rounds J. ChristopherORCID,Corgiat Edwin B.ORCID,Ye ChangtianORCID,Behnke Joseph A.ORCID,Kelly Seth M.ORCID,Corbett Anita H.ORCID,Moberg Kenneth H.ORCID

Abstract

ABSTRACTNab2encodes a conserved polyadenosine RNA-binding protein (RBP) with broad roles in post-transcriptional regulation, including in poly(A) RNA export, poly(A) tail length control, transcription termination, and mRNA splicing. Mutation of theNab2human orthologZC3H14gives rise to an autosomal recessive intellectual disability, but understanding of Nab2/ZC3H14 function in metazoan nervous systems is limited, in part because no comprehensive identification of metazoan Nab2/ZC3H14-associated RNA transcripts has yet been conducted. Moreover, many Nab2/ZC3H14 functional protein partnerships likely remain unidentified. Here we present evidence thatDrosophila melanogasterNab2 interacts with the RBP Ataxin-2 (Atx2), a neuronal translational regulator, and implicate these proteins in coordinate regulation of neuronal morphology and adult viability. We then present the first high-throughput identifications of Nab2- and Atx2-associated RNAs inDrosophilabrain neurons using an RNA immunoprecipitation-sequencing (RIP-Seq) approach. Critically, the RNA interactomes of each RBP overlap, and Nab2 exhibits high specificity in its RNA associations in neuronsin vivo, associating with a small fraction of all polyadenylated RNAs. The identities of shared associated transcripts (e.g.drk,me31B,stai) and of transcripts specific to Nab2 or Atx2 (e.g.Arpc2,tea, respectively) promise insight into neuronal functions of and interactions between each RBP. Significantly, Nab2-associated RNAs are overrepresented for internal A-rich motifs, suggesting these sequences may partially mediate Nab2 target selection. Taken together, these data demonstrate that Nab2 opposingly regulates neuronal morphology and shares associated neuronal RNAs with Atx2, and thatDrosophilaNab2 associates with a more specific subset of polyadenylated mRNAs than its polyadenosine affinity alone may suggest.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3