The Drosophila RNA binding protein Nab2 patterns dendritic arbors and axons via the planar cell polarity pathway

Author:

Corgiat Edwin B.,List Sara M.,Rounds J. ChristopherORCID,Yu Dehong,Chen Ping,Corbett Anita H.,Moberg Kenneth H.ORCID

Abstract

AbstractRNA binding proteins support neurodevelopment by modulating numerous steps in post-transcriptional regulation, including splicing, export, translation, and turnover of mRNAs that can traffic into axons and dendrites. One such RBP is ZC3H14, which is lost in an inherited intellectual disability. The Drosophila melanogaster ZC3H14 ortholog, Nab2, localizes to neuronal nuclei and cytoplasmic ribonucleoprotein granules, and is required for olfactory memory and proper axon projection into brain mushroom bodies. Nab2 can act as a translational repressor in conjunction with the Fragile-X mental retardation protein homolog Fmr1 and shares target RNAs with the Fmr1-interacting RBP Ataxin-2. However, neuronal signaling pathways regulated by Nab2 and their potential roles outside of mushroom body axons remain undefined. Here, we demonstrate that Nab2 restricts branching and projection of larval sensory dendrites via the planar cell polarity pathway, and that this link may provide a conserved mechanism through which Nab2/ZC3H14 modulates projection of both axons and dendrites. Planar cell polarity proteins are enriched in a Nab2-regulated brain proteomic dataset. Complementary genetic data indicate that Nab2 guides dendrite and axon growth through the planar-cell-polarity pathway. Analysis of the core planar cell polarity protein Vang, which is depleted in the Nab2 mutant whole-brain proteome, uncovers selective and dramatic loss of Vang within axon/dendrite-enriched brain neuropil relative to brain regions containing cell bodies. Collectively, these data demonstrate that Nab2 regulates dendritic arbors and axon projection by a planar-cell-polarity-linked mechanism and identify Nab2 as required for accumulation of the core planar cell polarity factor Vang in distal neuronal projections.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3