Quantitative blood flow estimation in vivo by optical speckle image velocimetry

Author:

Qureshi Muhammad MohsinORCID,Liu Yan,Mac Khuong Duy,Kim Minsung,Safi Abdul Mohaimen,Chung EuiheonORCID

Abstract

AbstractSpeckle based methods are popular non-invasive, label-free full-field optical techniques for imaging blood flow maps at single vessel resolution with a high temporal resolution. However, conventional speckle approach cannot provide an absolute velocity map with magnitude and direction. Here, we report a novel optical speckle image velocimetry (OSIV) technique for measuring the quantitative blood flow vector map by utilizing particle image velocimetry with speckle cross-correlations. We demonstrate that our OSIV instrument has a linearity range up to 7 mm/s, higher than conventional optical methods. Our method can measure the absolute flow vector map at up to 190 Hz without sacrificing the image size, and it eliminates the need for a high-speed camera/detector. We applied OSIV to image the blood flow in a mouse brain, and as a proof of concept, imaged the real-time dynamic changes in the cortical blood flow field during the stroke process in vivo. Our wide-field quantitative flow measurement OSIV method without the need of tracers provides a valuable tool for studying the healthy and diseased brain.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3