Toward detecting atherosclerosis using dynamic laser speckle contrast imaging: A numerical study

Author:

van As K.12ORCID,Dellevoet S. F. L. J.1,Boterman J.1,Kleijn C. R.12ORCID,Bhattacharya N.3,Kenjeres S.12ORCID

Affiliation:

1. Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, 2629 HZ Delft, The Netherlands

2. JM Burgerscentrum for Fluid Mechanics, 2628 CD Delft, The Netherlands

3. Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Department of Precision and Microsystems Engineering, 2628 CD Delft, The Netherlands

Abstract

The disease atherosclerosis causes stenosis inside the patient’s arteries, which often eventually turns lethal. Our goal is to detect a stenosis in a non-invasive manner, preferably in an early stage. To that end, we study whether and how laser speckle contrast imaging (LSCI) can be deployed. We start out by using computational fluid dynamics on a patient-specific stenosed carotid artery to reveal the flow profile in the region surrounding the stenosis, which compares well with particle image velocimetry experiments. We then use our own fully interferometric dynamic light scattering routines to simulate the process of LSCI of the carotid artery. Our approach offers an advantage over the established Monte Carlo techniques because they cannot incorporate dynamics. From the simulated speckle images, we extract a speckle contrast time series at different sites inside the artery, of which we then compute the frequency spectrum. We observe an increase in speckle boiling in sites where the flow profile is more complex, e.g., containing regions of backflow. In the region surrounding the stenosis, the measured speckle contrast is considerably lower due to the higher local velocity, and the frequency signature becomes notably different with prominent higher-order frequency modes that were absent in the other sites. Although future work is still required to make our new approach more quantitative and more applicable in practice, we have provided a first insight into how a stenosis might be detected in vivo using LSCI.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

J.M. Burgerscentrum

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3