RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo

Author:

Waldsich Christina,Grossberger Rupert,Schroeder Renée

Abstract

Efficient splicing of the td group I intron in vivo is dependent on the ribosome. In the absence of translation, the pre-mRNA is trapped in nonnative-splicing-incompetent conformations. Alternatively, folding of the pre-mRNA can be promoted by the RNA chaperone StpA or by the group I intron-specific splicing factor Cyt-18. To understand the mechanism of action of RNA chaperones, we probed the impact of StpA on the structure of the td intron in vivo. Our data suggest that StpA loosens tertiary interactions. The most prominent structural change was the opening of the base triples, which are involved in the correct orientation of the two major intron core domains. In line with the destabilizing activity of StpA, splicing of mutant introns with a reduced structural stability is sensitive to StpA. In contrast, Cyt-18 strengthens tertiary contacts, thereby rescuing splicing of structurally compromised td mutants in vivo. Our data provide direct evidence for protein-induced conformational changes within catalytic RNA in vivo. Whereas StpA resolves tertiary contacts enabling the RNA to refold, Cyt-18 contributes to the overall compactness of the td intron in vivo.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3