Abstract
Chaperone proteins—the most disordered among all protein groups—help RNAs fold into their functional structure by destabilizing misfolded configurations or stabilizing the functional ones. But disentangling the mechanism underlying RNA chaperoning is challenging, mostly because of inherent disorder of the chaperones and the transient nature of their interactions with RNA. In particular, it is unclear how specific the interactions are and what role is played by amino acid charge and polarity patterns. Here, we address these questions in the RNA chaperone StpA. We adapted direct coupling analysis (DCA) into the αβDCA method that can treat in tandem sequences written in two alphabets, nucleotides and amino acids. With αβDCA, we could analyze StpA–RNA interactions and show consistency with a previously proposed two-pronged mechanism: StpA disrupts specific positions in the group I intron while globally and loosely binding to the entire structure. Moreover, the interactions are strongly associated with the charge pattern: Negatively charged regions in the destabilizing StpA amino-terminal affect a few specific positions in the RNA, located in stems and in the pseudoknot. In contrast, positive regions in the carboxy-terminal contain strongly coupled amino acids that promote nonspecific or weakly specific binding to the RNA. The present study opens new avenues to examine the functions of disordered proteins and to design disruptive proteins based on their charge patterns.
Funder
taxpayers of South Korea through the Institute for Basic Science, Ministry of Education, Science and Technology
Natural Sciences and Engineering Research Council of Canada
Ministry of Education, Science and Technology” in acknowledgments section.
Publisher
Cold Spring Harbor Laboratory