The RNA chaperone StpA enables fast RNA refolding by destabilization of mutually exclusive base pairs within competing secondary structure elements

Author:

Hohmann Katharina F1,Blümler Anja2,Heckel Alexander2,Fürtig Boris1ORCID

Affiliation:

1. Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance BMRZ, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

2. Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Abstract

Abstract In bacteria RNA gene regulatory elements refold dependent on environmental clues between two or more long-lived conformational states each associated with a distinct regulatory state. The refolding kinetics are strongly temperature-dependent and especially at lower temperatures they reach timescales that are biologically not accessible. To overcome this problem, RNA chaperones have evolved. However, the precise molecular mechanism of how these proteins accelerate RNA refolding reactions remains enigmatic. Here we show how the RNA chaperone StpA of Escherichia coli leads to an acceleration of a bistable RNA’s refolding kinetics through the selective destabilization of key base pairing interactions. We find in laser assisted real-time NMR experiments on photocaged bistable RNAs that the RNA chaperone leads to a two-fold increase in refolding rates at low temperatures due to reduced stability of ground state conformations. Further, we can show that upon interaction with StpA, base pairing interactions in the bistable RNA are modulated to favor refolding through the dominant pseudoknotted transition pathway. Our results shed light on the molecular mechanism of the interaction between RNA chaperones and bistable RNAs and are the first step into a functional classification of chaperones dependent on their biophysical mode of operation.

Funder

DFG

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3