Computationally guided high-throughput design of self-assembling drug nanoparticles

Author:

Reker DanielORCID,Rybakova Yulia,Kirtane Ameya R.,Cao Ruonan,Yang Jee Won,Navamajiti Natsuda,Gardner Apolonia,Zhang Rosanna M.,Esfandiary Tina,L’Heureux Johanna,von Erlach Thomas,Smekalova Elena M.,Leboeuf Dominique,Hess Kaitlyn,Lopes Aaron,Rogner Jaimie,Collins Joy,Tamang Siddartha M.,Ishida Keiko,Chamberlain Paul,Yun DongSoo,Lytoon-Jean Abigail,Soule Christian K.,Cheah Jaime H.,Hayward Alison M.,Langer Robert,Traverso GiovanniORCID

Abstract

AbstractNanoformulations are transforming our capacity to effectively deliver and treat a myriad of conditions. However, many nanoformulation approaches still suffer from high production complexity and low drug loading. One potential solution relies on harnessing co-assembly of drugs and small molecular excipients to facilitate nanoparticle formation through solvent exchange without the need for chemical synthesis, generating nanoparticles with up to 95% drug loading. However, there is currently no understanding which of the millions of possible combinations of small molecules can result in the formation of these nanoparticles. Here we report the development of a high-throughput screening platform coupled to machine learning to enable the rapid evaluation of such nanoformulations. Our platform identified 101 novel self-assembling drug nanoparticles from 2.1 million pairings derived from 788 candidate drugs with one of 2686 excipients, spanning treatments for multiple diseases and often harnessing well-known food additives, vitamins, or approved drugs as carrier materials – with potential for accelerated approval and translation. Given their long-term stability and potential for clinical impact, we further characterize novel sorafenib-glycyrrhizin and terbinafine-taurocholic acid nanoparticles ex vivo and in vivo. We anticipate that this platform could accelerate the development of safer and more efficacious nanoformulations with high drug loadings for a wide range of therapeutics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3