Author:
Kim Sojung,Koo Taeyoung,Jee Hyeon-Gun,Cho Hee-Yeon,Lee Gyeorae,Lim Dong-Gyun,Shin Hyoung Shik,Kim Jin-Soo
Abstract
Here, we report that CRISPR guide RNAs (gRNAs) with a 5′-triphosphate group (5′-ppp gRNAs) produced via in vitro transcription trigger RNA-sensing innate immune responses in human and murine cells, leading to cytotoxicity. 5′-ppp gRNAs in the cytosol are recognized by DDX58, which in turn activates type I interferon responses, causing up to ∼80% cell death. We show that the triphosphate group can be removed by a phosphatase in vitro and that the resulting 5′-hydroxyl gRNAs in complex with Cas9 or Cpf1 avoid innate immune responses and can achieve targeted mutagenesis at a frequency of 95% in primary human CD4+ T cells. These results are in line with previous findings that chemically synthesized sgRNAs with a 5′-hydroxyl group are much more efficient than in vitro–transcribed (IVT) sgRNAs in human and other mammalian cells. The phosphatase treatment of IVT sgRNAs is a cost-effective method for making highly active sgRNAs, avoiding innate immune responses in human cells.
Funder
Institute for Basic Science
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics (clinical),Genetics
Cited by
178 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献