Automatic Identification of SARS Coronavirus using Compression-Complexity Measures

Author:

Balasubramanian Karthi,Nagaraj Nithin

Abstract

AbstractFinding vaccine or specific antiviral treatment for global pandemic of virus diseases (such as the ongoing COVID-19) requires rapid analysis, annotation and evaluation of metagenomic libraries to enable a quick and efficient screening of nucleotide sequences. Traditional sequence alignment methods are not suitable and there is a need for fast alignment-free techniques for sequence analysis. Information theory and data compression algorithms provide a rich set of mathematical and computational tools to capture essential patterns in biological sequences. In 2013, our research group (Nagaraj et al., Eur. Phys. J. Special Topics 222(3-4), 2013) has proposed a novel measure known as Effort-To-Compress (ETC) based on the notion of compression-complexity to capture the information content of sequences. In this study, we propose a compression-complexity based distance measure for automatic identification of SARS coronavirus strains from a set of viruses using only short fragments of nucleotide sequences. We also demonstrate that our proposed method can correctly distinguish SARS-CoV-2 from SARS-CoV-1 viruses by analyzing very short segments of nucleotide sequences. This work could be extended further to enable medical practitioners in automatically identifying and characterizing SARS coronavirus strain in a fast and efficient fashion using short and/or incomplete segments of nucleotide sequences. Potentially, the need for sequence assembly can be circumvented.NoteThe main ideas and results of this research were first presented at the International Conference on Nonlinear Systems and Dynamics (CNSD-2013) held at Indian Institute of Technology, Indore, December 12, 2013. In this manuscript, we have extended our preliminary analysis to include SARS-CoV-2 virus as well.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3