Development of meta-prompts for Large Language Models to screen titles and abstracts for diagnostic test accuracy reviews

Author:

Kataoka YukiORCID,So RyuheiORCID,Banno MasahiroORCID,Kumasawa JunjiORCID,Someko HidehiroORCID,Taito ShunsukeORCID,Terasawa Teruhiko,Tsujimoto YasushiORCID,Tsutsumi YusukeORCID,Wada YoshitakaORCID,Furukawa Toshi A.ORCID

Abstract

AbstractSystematic reviews (SRs) are a critical component of evidence-based medicine, but the process of screening titles and abstracts is time-consuming. This study aimed to develop and externally validate a method using large language models to classify abstracts for diagnostic test accuracy (DTA) systematic reviews, thereby reducing the human workload. We used a previously collected dataset for developing DTA abstract classifiers and applied prompt engineering. We developed an optimized meta-prompt for Generative Pre-trained Transformer (GPT)-3.5-turbo and GPT-4 to classify abstracts. In the external validation dataset 1, the prompt with GPT-3.5 turbo showed a sensitivity of 0.988, and a specificity of 0.298. GPT-4 showed a sensitivity of 0.982, and a specificity of 0.677. In the external validation dataset 2, GPT-3.5 turbo showed a sensitivity of 0.919, and a specificity of 0.434. GPT-4 showed a sensitivity of 0.806, and a specificity of 0.740. If we included eligible studies from among the references of the identified studies, GPT-3.5 turbo had no critical misses, while GPT-4 had some misses. Our study indicates that GPT-3.5 turbo can be effectively used to classify abstracts for DTA systematic reviews. Further studies using other dataset are warranted to confirm our results. Additionally, we encourage the use of our framework and publicly available dataset for further exploration of more effective classifiers using other LLMs and prompts (https://github.com/youkiti/ARE/).HightlightsWhat is already known- Title and abstract screening in systematic reviews (SRs) consumes significant time.- Several attempts using machine learning to reduce this process in diagnostic test accuracy (DTA) SRs exist, but they have not yielded positive results in external validation.What is new- We aimed to develop and externally validate optimized meta-prompt for GPT-3.5-turbo and GPT-4 to classify abstracts for DTA SRs.- Through an iterative approach across three training datasets, an optimal meta-prompt capable of identifying DTA studies with remarkable sensitivity and specificity was developed.- The accuracy reproduced in the external validation datasets.Potential Impact for Readers- The developed meta-prompt can lessen the need for humans to read abstracts for DTA SRs, saving significant time and resources.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3