IAV-CNN: a 2D convolutional neural network model to predict antigenic variants of influenza A virus

Author:

Yin RuiORCID,Thwin Nyi Nyi,Zhuang Pei,Zhang Yu,Lin Zhuoyi,Kwoh Chee Keong

Abstract

The rapid evolution of influenza viruses constantly leads to the emergence of novel influenza strains that are capable of escaping from population immunity. The timely determination of antigenic variants is critical to vaccine design. Empirical experimental methods like hemagglutination inhibition (HI) assays are time-consuming and labor-intensive, requiring live viruses. Recently, many computational models have been developed to predict the antigenic variants without considerations of explicitly modeling the interdependencies between the channels of feature maps. Moreover, the influenza sequences consisting of similar distribution of residues will have high degrees of similarity and will affect the prediction outcome. Consequently, it is challenging but vital to determine the importance of different residue sites and enhance the predictive performance of influenza antigenicity. We have proposed a 2D convolutional neural network (CNN) model to infer influenza antigenic variants (IAV-CNN). Specifically, we introduce a new distributed representation of amino acids, named ProtVec that can be applied to a variety of downstream proteomic machine learning tasks. After splittings and embeddings of influenza strains, a 2D squeeze-and-excitation CNN architecture is constructed that enables networks to focus on informative residue features by fusing both spatial and channel-wise information with local receptive fields at each layer. Experimental results on three influenza datasets show IAV-CNN achieves state-of-the-art performance combing the new distributed representation with our proposed architecture. It outperforms both traditional machine algorithms with the same feature representations and the majority of existing models in the independent test data. Therefore we believe that our model can be served as a reliable and robust tool for the prediction of antigenic variants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3