Time series computational prediction of vaccines for influenza A H3N2 with recurrent neural networks

Author:

Yin Rui1ORCID,Zhang Yu1,Zhou Xinrui1,Kwoh Chee Keong1

Affiliation:

1. School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Abstract

Influenza viruses are persistently threatening public health, causing annual epidemics and sporadic pandemics due to rapid viral evolution. Vaccines are used to prevent influenza infections but the composition of the influenza vaccines have to be updated regularly to ensure its efficacy. Computational tools and analyses have become increasingly important in guiding the process of vaccine selection. By constructing time-series training samples with splittings and embeddings, we develop a computational method for predicting suitable strains as the recommendation of the influenza vaccines using recurrent neural networks (RNNs). The Encoder-decoder architecture of RNN model enables us to perform sequence-to-sequence prediction. We employ this model to predict the prevalent sequence of the H3N2 viruses sampled from 2006 to 2017. The identity between our predicted sequence and recommended vaccines is greater than 98% and the [Formula: see text] indicates their antigenic similarity. The multi-step vaccine prediction further demonstrates the robustness of our method which achieves comparable results in contrast to single step prediction. The results show significant matches of the recommended vaccine strains to the circulating strains. We believe it would facilitate the process of vaccine selection and surveillance of seasonal influenza epidemics.

Funder

AcRF Tier 2

Tier 1

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3