CAVE: Connectome Annotation Versioning Engine

Author:

Dorkenwald SvenORCID,Schneider-Mizell Casey M.ORCID,Brittain DerrickORCID,Halageri AkhileshORCID,Jordan Chris,Kemnitz NicoORCID,Castro Manual A.,Silversmith WilliamORCID,Maitin-Shephard Jeremy,Troidl Jakob,Pfister HanspeterORCID,Gillet Valentin,Xenes DanielORCID,Bae J. AlexanderORCID,Bodor Agnes L.ORCID,Buchanan JoAnnORCID,Bumbarger Daniel J.,Elabbady LeilaORCID,Jia Zhen,Kapner Daniel,Kinn SamORCID,Lee KisukORCID,Li Kai,Lu RanORCID,Macrina ThomasORCID,Mahalingam GayathriORCID,Mitchell Eric,Mondal Shanka Subhra,Mu Shang,Nehoran BarakORCID,Popovych Sergiy,Takeno MarcORCID,Torres RusselORCID,Turner Nicholas L.ORCID,Wong William,Wu JingpengORCID,Yin WenjingORCID,Yu Szi-chiehORCID,Reid R. ClayORCID,da Costa Nuno MaçaricoORCID,Seung H. SebastianORCID,Collman ForrestORCID

Abstract

AbstractAdvances in Electron Microscopy, image segmentation and computational infrastructure have given rise to large-scale and richly annotated connectomic datasets which are increasingly shared across communities. To enable collaboration, users need to be able to concurrently create new annotations and correct errors in the automated segmentation by proofreading. In large datasets, every proofreading edit relabels cell identities of millions of voxels and thousands of annotations like synapses. For analysis, users require immediate and reproducible access to this constantly changing and expanding data landscape. Here, we present the Connectome Annotation Versioning Engine (CAVE), a computational infrastructure for immediate and reproducible connectome analysis in up-to petascale datasets (∼1mm3) while proofreading and annotating is ongoing. For segmentation, CAVE provides a distributed proofreading infrastructure for continuous versioning of large reconstructions. Annotations in CAVE are defined by locations such that they can be quickly assigned to the underlying segment which enables fast analysis queries of CAVE’s data for arbitrary time points. CAVE supports schematized, extensible annotations, so that researchers can readily design novel annotation types. CAVE is already used for many connectomics datasets, including the largest datasets available to date.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3