Machine learning guided signal enrichment for ultrasensitive plasma tumor burden monitoring

Author:

Widman Adam J.ORCID,Shah Minita,Øgaard Nadia,Khamnei Cole C.,Frydendahl Amanda,Deshpande Aditya,Arora Anushri,Zhang Mingxuan,Halmos Daniel,Bass Jake,Langanay Theophile,Rajagopalan Srinivas,Steinsnyder Zoe,Liao Will,Rasmussen Mads Heilskov,Jensen Sarah Østrup,Nors Jesper,Therkildsen Christina,Sotelo Jesus,Brand Ryan,Shah Ronak H.,Cheng Alexandre Pellan,Maher Colleen,Spain Lavinia,Krause Kate,Frederick Dennie T.,Malbari Murtaza S.,Marton Melissa,Manaa Dina,Winterkorn Lara,Callahan Margaret K.,Boland Genevieve,Wolchok Jedd D.,Saxena Ashish,Turajlic Samra,Imielinski Marcin,Berger Michael F.,Altorki Nasser K.,Postow Michael A.,Robine NicolasORCID,Andersen Claus Lindbjerg,Landau Dan A.

Abstract

ABSTRACTIn solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole genome sequencing (WGS). We now introduce MRD-EDGE, a composite machine learning-guided WGS ctDNA single nucleotide variant (SNV) and copy number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE uses deep learning and a ctDNA-specific feature space to increase SNV signal to noise enrichment in WGS by 300X compared to our previous noise suppression platform MRDetect. MRD-EDGE also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1Gb to 200Mb, thereby expanding its applicability to a wider range of solid tumors. We harness the improved performance to track changes in tumor burden in response to neoadjuvant immunotherapy in non-small cell lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal to noise enrichment in MRD-EDGE enables de novo mutation calling in melanoma without matched tumor, yielding clinically informative TF monitoring for patients on immune checkpoint inhibition.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3