Current Applications and Challenges of Next-Generation Sequencing in Plasma Circulating Tumour DNA of Ovarian Cancer

Author:

Roque Ricardo123,Ribeiro Ilda Patrícia12ORCID,Figueiredo-Dias Margarida456ORCID,Gourley Charlie7ORCID,Carreira Isabel Marques12

Affiliation:

1. Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal

2. Centre of Investigation on Environment Genetics and Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal

3. Portuguese Institute of Oncology of Coimbra, 3000-075 Coimbra, Portugal

4. Faculty of Medicine, Gynecology Department, University of Coimbra, 3004-504 Coimbra, Portugal

5. Coimbra Academic and Clinical Centre, 3000-370 Coimbra, Portugal

6. Gynecology Department, Hospital University Centre of Coimbra, 3004-561 Coimbra, Portugal

7. Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK

Abstract

Circulating tumour DNA (ctDNA) facilitates longitudinal study of the tumour genome, which, unlike tumour tissue biopsies, globally reflects intratumor and intermetastatis heterogeneity. Despite its costs, next-generation sequencing (NGS) has revolutionised the study of ctDNA, ensuring a more comprehensive and multimodal approach, increasing data collection, and introducing new variables that can be correlated with clinical outcomes. Current NGS strategies can comprise a tumour-informed set of genes or the entire genome and detect a tumour fraction as low as 10−5. Despite some conflicting studies, there is evidence that ctDNA levels can predict the worse outcomes of ovarian cancer (OC) in both early and advanced disease. Changes in those levels can also be informative regarding treatment efficacy and tumour recurrence, capable of outperforming CA-125, currently the only universally utilised plasma biomarker in high-grade serous OC (HGSOC). Qualitative evaluation of sequencing shows that increasing copy number alterations and gene variants during treatment may correlate with a worse prognosis in HGSOC. However, following tumour clonality and emerging variants during treatment poses a more unique opportunity to define treatment response, select patients based on their emerging resistance mechanisms, like BRCA secondary mutations, and discover potential targetable variants. Sequencing of tumour biopsies and ctDNA is not always concordant, likely as a result of clonal heterogeneity, which is better captured in the plasma samples than it is in a large number of biopsies. These incoherences may reflect tumour clonality and reveal the acquired alterations that cause treatment resistance. Cell-free DNA methylation profiles can be used to distinguish OC from healthy individuals, and NGS methylation panels have been shown to have excellent diagnostic capabilities. Also, methylation signatures showed promise in explaining treatment responses, including BRCA dysfunction. ctDNA is evolving as a promising new biomarker to track tumour evolution and clonality through the treatment of early and advanced ovarian cancer, with potential applicability in prognostic prediction and treatment selection. While its role in HGSOC paves the way to clinical applicability, its potential interest in other histological subtypes of OC remains unknown.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3