ARPC5 Isoforms and Their Regulation by Calcium-Calmodulin-N-WASP Drive Distinct Arp2/3-dependent Actin Remodeling Events in CD4 T Cells

Author:

Sadhu Lopamudra,Tsopoulidis Nikolaos,Laketa Vibor,Way MichaelORCID,Fackler Oliver T.

Abstract

AbstractArp2/3-dependent formation of nuclear F-actin networks of different morphology and stability is observed in an increasing number of biological processes. In CD4 T cells, T cell receptor (TCR) signaling induces cytoplasmic and nuclear F-actin assembly via Arp2/3 to strengthen contacts to antigen presenting cells and to regulate gene expression, respectively. How Arp2/3 complex is regulated to mediate these distinct actin polymerization events in response to a common stimulus is unknown. Arp2/3-complex consists of 7 subunits where ARP3, ARPC1 and ARPC5 exist as two different isoforms in humans that can assemble in complexes with different properties. Examining whether specific Arp2/3 subunit isoforms govern distinct actin remodeling events in CD4 T cells, we find that the ARPC5L isoform drives nuclear actin polymerization, while cytoplasmic actin dynamics and TCR proximal signalling selectively relies on ARPC5. In contrast, formation of stable nuclear F-actin networks triggered by DNA replication stress in CD4 T cells requires ARPC5 and is independent of ARPC5L. Moreover, nuclear actin polymerization induced by TCR signaling but not by DNA replication stress is controlled by nuclear calcium-calmodulin signalling and N-WASP. Specific ARPC5 isoforms thus govern Arp2/3 complex activity in distinct actin polymerization events. ARPC5 isoform diversity thus emerges as a mechanism to tailor Arp2/3 activity to different physiological stimuli.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3