ArpC5 isoforms regulate Arp2/3 complex-dependent protrusion through differential Ena/VASP positioning

Author:

Fäßler FlorianORCID,Javoor Manjunath GORCID,Datler JuliaORCID,Döring Hermann,Hofer Florian W,Dimchev GeorgiORCID,Hodirnau Victor-ValentinORCID,Rottner KlemensORCID,Schur Florian KMORCID

Abstract

AbstractTight regulation of Arp2/3 complex is required to allow productive nucleation of force-generating, branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into Arp2/3 complex. Specifically, both isoforms of the ArpC5 subunit, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. Elevated levels of ArpC5 have also been linked to increased cancer progression and metastasis. Here, we have combined genetic engineering of cells and cellular structural biology to describe how ArpC5 and ArpC5L differentially regulate cell migration. They do so by defining the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, protein dynamics, and actin network ultrastructure. ArpC5 isoforms also have an impact on the positioning of actin assembly factors from the Ena/VASP family, which act downstream of Arp2/3 complex-mediated nucleation. This suggests that ArpC5 and Ena/VASP proteins, both predictors for poor outcome in cancer, are part of a signaling pathway enhancing cell migration and, by inference, metastasis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3