ClustAssess: tools for assessing the robustness of single-cell clustering

Author:

Shahsavari ArashORCID,Munteanu Andi,Mohorianu IrinaORCID

Abstract

AbstractThe transition from bulk to single-cell analyses refocused the computational challenges for high-throughput sequencing data-processing. The core of single-cell pipelines is partitioning cells and assigning cell-identities; extensive consequences derive from this step; generating robust and reproducible outputs is essential. From benchmarking established single-cell pipelines, we observed that clustering results critically depend on algorithmic choices (e.g. method, parameters) and technical details (e.g. random seeds).We presentClustAssess, a suite of tools for quantifying clustering robustness both within and across methods. The tools provide fine-grained information enabling (a) the detection of optimal number of clusters, (b) identification of regions of similarity (and divergence) across methods, (c) a data driven assessment of optimal parameter ranges. The aim is to assist practitioners in evaluating the robustness of cell-identity inference based on the partitioning, and provide information for choosing robust clustering methods and parameters.We illustrate its use on three case studies: a single-cell dataset of in-vivo hematopoietic stem and progenitors (10x Genomics scRNA-seq), in-vitro endoderm differentiation (SMART-seq), and multimodal in-vivo peripheral blood (10x RNA+ATAC). The additional checks offer novel viewpoints on clustering stability, and provide a framework for consistent decision-making on preprocessing, method choice, and parameters for clustering.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3