Cytocipher determines significantly different populations of cells in single-cell RNA-seq data

Author:

Balderson Brad1ORCID,Piper Michael2ORCID,Thor Stefan2ORCID,Bodén Mikael1ORCID

Affiliation:

1. School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD 4072, Australia

2. School of Biomedical Sciences, University of Queensland , Brisbane, QLD 4072, Australia

Abstract

Abstract Motivation Identification of cell types using single-cell RNA-seq is revolutionizing the study of multicellular organisms. However, typical single-cell RNA-seq analysis often involves post hoc manual curation to ensure clusters are transcriptionally distinct, which is time-consuming, error-prone, and irreproducible. Results To overcome these obstacles, we developed Cytocipher, a bioinformatics method and scverse compatible software package that statistically determines significant clusters. Application of Cytocipher to normal tissue, development, disease, and large-scale atlas data reveals the broad applicability and power of Cytocipher to generate biological insights in numerous contexts. This included the identification of cell types not previously described in the datasets analysed, such as CD8+ T cell subtypes in human peripheral blood mononuclear cells; cell lineage intermediate states during mouse pancreas development; and subpopulations of luminal epithelial cells over-represented in prostate cancer. Cytocipher also scales to large datasets with high-test performance, as shown by application to the Tabula Sapiens Atlas representing >480 000 cells. Cytocipher is a novel and generalizable method that statistically determines transcriptionally distinct and programmatically reproducible clusters from single-cell data. Availability and implementation The software version used for this manuscript has been deposited on Zenodo (https://doi.org/10.5281/zenodo.8089546), and is also available via github (https://github.com/BradBalderson/Cytocipher).

Funder

Australian Government Research Training Program

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3