Dynamical networks: finding, measuring, and tracking neural population activity using network science

Author:

Humphries Mark D.ORCID

Abstract

ABSTRACTSystems neuroscience is in a head-long rush to record from as many neurons at the same time as possible. As the brain computes and codes using neuron populations, it is hoped these data will uncover the fundamentals of neural computation. But with hundreds, thousands, or more simultaneously recorded neurons comes the inescapable problems of visualising, describing, and quantifying their interactions. Here I argue that network science provides a set of scalable, analytical tools that already solve these problems. By treating neurons as nodes and their interactions as links, a single network can visualise and describe an arbitrarily large recording. I show that with this description we can quantify the effects of manipulating a neural circuit, track changes in population dynamics over time, and quantitatively define theoretical concepts of neural populations such as cell assemblies. Using network science as a core part of analysing population recordings will thus provide both qualitative and quantitative advances to our understanding of neural computation.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3