Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders

Author:

Viejo Guillaume,Cortier Thomas,Peyrache Adrien

Abstract

AbstractUnderstanding how neurons cooperate to integrate sensory inputs and guide behavior is a fundamental problem in neuroscience. A large body of methods have been developed to study neuronal firing at the single cell and population levels, generally seeking interpretability as well as predictivity. However, these methods are usually confronted with the lack of ground-truth necessary to validate the approach. Here, using neuronal data from the head-direction (HD) system, we present evidence demonstrating how gradient boosted trees, a non-linear and supervised Machine Learning tool, can learn the relationship between behavioral parameters and neuronal responses with high accuracy by optimizing the information rate. Interestingly, and unlike other classes of Machine Learning methods, the intrinsic structure of the trees can be interpreted in relation to behavior (e.g. to recover the tuning curves) or to study how neurons cooperate with their peers in the network. We show how the method, unlike linear analysis, reveals that the coordination in thalamo-cortical circuits is qualitatively the same during wakefulness and sleep, indicating a brain-state independent feed-forward circuit. Machine Learning tools thus open new avenues for benchmarking model-based characterization of spike trains.Author summaryThe thalamus is a brain structure that relays sensory information to the cortex and mediates cortico-cortical interaction. Unraveling the dialogue between the thalamus and the cortex is thus a central question in neuroscience, with direct implications on our understanding of how the brain operates at the macro scale and of the neuronal basis of brain disorders that possibly result from impaired thalamo-cortical networks, such as absent epilepsy and schizophrenia. Methods that are classically used to study the coordination between neuronal populations are usually sensitive to the ongoing global dynamics of the networks, in particular desynchronized (wakefulness and REM sleep) and synchronized (non-REM sleep) states. They thus fail to capture the underlying temporal coordination. By analyzing recordings of thalamic and cortical neuronal populations of the HD system in freely moving mice during exploration and sleep, we show how a general non-linear encoder captures a brain-state independent temporal coordination where the thalamic neurons leading their cortical targets by 20-50ms in all brain states. This study thus demonstrates how methods that do not assume any models of neuronal activity may be used to reveal important aspects of neuronal dynamics and coordination between brain regions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3