Scalable and accurate method for neuronal ensemble detection in spiking neural networks

Author:

Herzog RubénORCID,Morales Arturo,Mora SorayaORCID,Araya Joaquín,Escobar María-JoséORCID,Palacios Adrian G.,Cofré RodrigoORCID

Abstract

We propose a novel, scalable, and accurate method for detecting neuronal ensembles from a population of spiking neurons. Our approach offers a simple yet powerful tool to study ensemble activity. It relies on clustering synchronous population activity (population vectors), allows the participation of neurons in different ensembles, has few parameters to tune and is computationally efficient. To validate the performance and generality of our method, we generated synthetic data, where we found that our method accurately detects neuronal ensembles for a wide range of simulation parameters. We found that our method outperforms current alternative methodologies. We used spike trains of retinal ganglion cells obtained from multi-electrode array recordings under a simple ON-OFF light stimulus to test our method. We found a consistent stimuli-evoked ensemble activity intermingled with spontaneously active ensembles and irregular activity. Our results suggest that the early visual system activity could be organized in distinguishable functional ensembles. We provide a Graphic User Interface, which facilitates the use of our method by the scientific community.

Funder

conicyt

fondecyt

AFOSR

ICM-ANID

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference49 articles.

1. Hebb DO. The Organization of Behaviour. Organization. 1949; p. 62. https://doi.org/citeulike-article-id:1282862

2. Cell assemblies at multiple time scales with arbitrary lag distributions;E Russo;eLife,2017

3. The brainweb: Phase synchronization and large-scale integration;F Varela;Nature Reviews Neuroscience,2001

4. Neural synchrony in cortical networks: history, concept and current status;P Uhlhaas;Frontiers in Integrative Neuroscience,2009

5. Spontaneous behaviors drive multidimensional, brainwide activity;C Stringer;Science,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3