AphA and LuxR/HapR reciprocally control quorum sensing in vibrios

Author:

Rutherford Steven T.,van Kessel Julia C.,Shao Yi,Bassler Bonnie L.

Abstract

Bacteria cycle between periods when they perform individual behaviors and periods when they perform group behaviors. These transitions are controlled by a cell–cell communication process called quorum sensing, in which extracellular signal molecules, called autoinducers (AIs), are released, accumulate, and are synchronously detected by a group of bacteria. AI detection results in community-wide changes in gene expression, enabling bacteria to collectively execute behaviors such as bioluminescence, biofilm formation, and virulence factor production. In this study, we show that the transcription factor AphA is a master regulator of quorum sensing that operates at low cell density (LCD) in Vibrio harveyi and Vibrio cholerae. In contrast, LuxR (V. harveyi)/HapR (V. cholerae) is the master regulator that operates at high cell density (HCD). At LCD, redundant small noncoding RNAs (sRNAs) activate production of AphA, and AphA and the sRNAs repress production of LuxR/HapR. Conversely, at HCD, LuxR/HapR represses aphA. This network architecture ensures maximal AphA production at LCD and maximal LuxR/HapR production at HCD. Microarray analyses reveal that 300 genes are regulated by AphA at LCD in V. harveyi, a subset of which is also controlled by LuxR. We propose that reciprocal gradients of AphA and LuxR/HapR establish the quorum-sensing LCD and HCD gene expression patterns, respectively.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3