Abstract
SummaryBacteria commonly exist in multicellular, surface-attached communities called biofilms. Biofilms are central to ecology, medicine, and industry. TheVibrio choleraepathogen forms biofilms from single founder cells that, via cell division, mature into three-dimensional structures with distinct, yet reproducible, regional architectures. To define mechanisms underlying biofilm developmental transitions, we establish a single-molecule fluorescence in situ hybridization (smFISH) approach that enables accurate quantitation of spatiotemporal gene-expression patterns in biofilms at individual-cell resolution. smFISH analyses ofV. choleraebiofilm regulatory and structural genes demonstrate that, as biofilms mature, matrix gene expression decreases, and simultaneously, a pattern emerges in which matrix gene expression is largely confined to peripheral biofilm cells. Both quorum sensing and c-di-GMP-signaling are required to generate the proper temporal pattern of matrix gene expression, while c-di-GMP-signaling sets the regional expression pattern without input from quorum sensing. The smFISH strategy provides insight into mechanisms conferring particular fates to individual biofilm cells.
Publisher
Cold Spring Harbor Laboratory