Generation of a mutator parasite to drive resistome discovery in Plasmodium falciparum

Author:

Kümpornsin Krittikorn,Kochakarn Theerarat,Yeo Tomas,Luth Madeline R,Pearson Richard D,Hoshizaki Johanna,Schindler Kyra A,Mok Sachel,Park Heekuk,Uhlemann Anne-Catrin,Cubel Sonia Moliner,Franco Virginia,Gomez-Lorenzo Maria G,Gamo Francisco Javier,Winzeler Elizabeth AORCID,Fidock David A,Chookajorn Thanat,Lee Marcus CSORCID

Abstract

ABSTRACTIn vitro evolution of drug resistance is a powerful approach for identifying antimalarial targets, however key obstacles to eliciting resistance are the parasite inoculum size and mutation rate. Here we sought to increase parasite genetic diversity to potentiate resistance selections by editing catalytic residues of Plasmodium falciparum DNA polymerase δ. Mutation accumulation assays revealed a ∼5-8 fold elevation in the mutation rate, with an increase of 13-28 fold in drug-pressured lines. When challenged with KAE609, high-level resistance was obtained more rapidly and at lower inoculum than wild-type parasites. Selections were also successful with an “irresistible” compound, MMV665794 that failed to yield resistance with other strains. Mutations in a previously uncharacterized gene, PF3D7_1359900, which we term quinoxaline resistance protein (QRP1), were validated as causal for resistance to MMV665794 and an analog, MMV007224. The increased genetic repertoire available to this mutator” parasite can be leveraged to drive P. falciparum resistome discovery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3