Mimicking tumor cell heterogeneity of colorectal cancer in a patient-derived organoid-fibroblast model

Author:

Atanasova Velina S,de Jesus Cardona Crhistian,Hejret Vaclav,Tiefenbacher Andreas,Tran Loan,Binder Carina,Mair Theresia,Kabiljo Julijan,Clement Janik,Woeran Katharina,Neudert Barbara,Hengstschläger Markus,Mitterhauser Markus,Müllauer Leonhard,Tichy Boris,Bergmann Michael,Schweikert Gabriele,Hartl Markus,Dolznig Helmut,Egger GerdaORCID

Abstract

AbstractPatient-derived organoid (PDO) cancer models are generated from epithelial tumor cells. Although they reflect the molecular tumor characteristics, they lack the complexity of the tumor microenvironment, which is a key driver of tumorigenesis and therapy response. Here, we present a colorectal cancer (CRC) organoid model that incorporates epithelial cells and stromal fibroblasts from the same patient. Molecular characterization of primary cancer associated fibroblasts (CAFs) and matched normal fibroblasts (NF) revealed proteomic, secretome and gene expression differences in pathways associated with tumor related fibroblast function. Further, CAFs retained higher motility compared to NFs in vitro. Importantly, both CAFs and NFs supported cancer cell proliferation in 3D co-cultures, without the addition of classical niche factors. PDOs grown together with fibroblasts displayed a larger cellular heterogeneity of tumor cells compared to mono-cultures, and closely resembled the in vivo tumor morphology. This was also confirmed by the calculation of cellular proportions of epithelial cell subtypes in organoid mono-versus co-cultures, which were inferred through bioinformatics deconvolution of bulk RNA sequencing data using published single cell RNA sequencing datasets from CRC tissues. Additionally, we observed a mutual crosstalk between tumor cells and fibroblasts in the co-cultures. This was manifested by majorly deregulated pathways such as cell-cell communication and extracellular matrix remodeling in the organoids. For the fibroblasts, we observed enhanced expression of tumor induced marker genes and cytokines characteristic for myo- and immunogenic fibroblasts. This model will be vital as a physiological personalized tumor model to study disease mechanisms and therapy response in CRC.One Sentence SummaryPatient matched fibroblasts support tumor organoid growth in 3D co-culture and maintain intratumoral cellular heterogeneity and histo-morphology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3