Evidence of recent increased pathogenicity within the Australian Ascochyta rabiei population

Author:

Sambasivam P,Mehmood Y,Bar IORCID,Davidson J,Hobson K,Moore KORCID,Ford RORCID

Abstract

AbstractAscochyta Blight (AB), caused by Ascochyta rabiei (syn Phoma rabiei), is the major endemic foliar fungal disease affecting the Australian chickpea industry, resulting with potential crop loss and management costs. This study was conducted to better understand the risk posed by the Australian A. rabiei population to current resistance sources and to provide informed decision support for chemical control strategies. Recent changes in the pathogenicity of the population were proposed based on disease severity and histopathological observations on a host set. Controlled environment disease screening of 201 isolates on the host set revealed distinct pathogenicity groups, with 41% of all isolates assessed as highly aggressive and a significant increase in the proportion of isolates able to cause severe damage on resistant and moderately resistant cultivars since 2013. In particular, the frequency of highly aggressive isolates on the widely adopted PBA HatTrick cultivar rose from 18% in 2013 to 68% in 2017. In addition, isolates collected since 2016 caused severe disease on Genesis 090, another widely adopted moderately resistant cultivar and on ICC3996, a commonly used resistance source. Of immediate concern was the 10% of highly aggressive isolates able to severely damage the recently released resistant cultivar PBA Seamer (2016). Histopathology studies revealed that the most aggressive isolates were able to germinate, develop appressoria and invade directly through the epidermis faster than lower aggressive isolates on all hosts assessed, including ICC3996. The fungal invasion triggered a common reactive oxygen species (ROS) and hypersensitive response (HR) on all assessed resistant genotypes with initial biochemical and subsequent structural defence responses initiated within 24 hours of inoculation by the most highly aggressive isolates. These responses were much faster on the less resistant and fastest on the susceptible check host, indicating that speed of recognition was correlated with resistance rating. This will inform fungicide application timing so that infected crops are sprayed with prophylactic chemistries prior to invasion and with systemic chemistries after the pathogen has invaded.

Publisher

Cold Spring Harbor Laboratory

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3