Phenotypic and Genotypic Diversity of Ascochyta fabae Populations in Southern Australia

Author:

Blake Sara N.,Lee Robert C.,Russ Michelle H.,Farquharson Elizabeth A.,Rose Jade A.,Herdina ,Goonetilleke Shashi N.,Farfan-Caceres Lina M.,Debler Johannes W.,Syme Robert A.,Davidson Jennifer A.

Abstract

Ascochyta fabae Speg. is a serious foliar fungal disease of faba bean and a constraint to production worldwide. This study investigated the phenotypic and genotypic diversity of the A. fabae pathogen population in southern Australia and the pathogenic variability of the population was examined on a differential set of faba bean cultivars. The host set was inoculated with 154 A. fabae isolates collected from 2015 to 2018 and a range of disease reactions from high to low aggressiveness was observed. Eighty percent of isolates collected from 2015 to 2018 were categorized as pathogenicity group (PG) PG-2 (pathogenic on Farah) and were detected in every region in each year of collection. Four percent of isolates were non-pathogenic on Farah and designated as PG-1. A small group of isolates (16%) were pathogenic on the most resistant differential cultivars, PBA Samira or Nura, and these isolates were designated PG-3. Mating types of 311 isolates collected between 1991 and 2018 were determined and showed an equal ratio of MAT1–1 and MAT1–2 in the southern Australian population. The genetic diversity and population structure of 305 isolates were examined using DArTseq genotyping, and results suggest no association of genotype with any of the population descriptors viz.: collection year, region, host cultivar, mating type, or PG. A Genome-Wide Association Study (GWAS) was performed to assess genetic association with pathogenicity traits and a significant trait-associated genomic locus for disease in Farah AR and PBA Zahra, and PG was revealed. The high frequency of mating of A. fabae indicated by the wide distribution of the two mating types means changes to virulence genes would be quickly distributed to other genotypes. Continued monitoring of the A. fabae pathogen population through pathogenicity testing will be important to identify any increases in aggressiveness or emergence of novel PGs. GWAS and future genetic studies using biparental mating populations could be useful for identifying virulence genes responsible for the observed changes in pathogenicity.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3