Transformations of sensory information in the brain reflect a changing definition of optimality

Author:

Manning Tyler S.ORCID,Alexander Emma,Cumming Bruce G.ORCID,DeAngelis Gregory C.ORCID,Huang XinORCID,Cooper Emily A.ORCID

Abstract

Neurons throughout the brain modulate their firing rate lawfully in response to changes in sensory input. Theories of neural computation posit that these modulations reflect the outcome of a constrained optimization: neurons aim to efficiently and robustly represent sensory information under resource limitations. Our understanding of how this optimization varies across the brain, however, is still in its infancy. Here, we show that neural responses transform along the dorsal stream of the visual system in a manner consistent with a transition from optimizing for information preservation to optimizing for perceptual discrimination. Focusing on binocular disparity – the slight differences in how objects project to the two eyes – we re-analyze measurements from neurons characterizing tuning curves in macaque monkey brain regions V1, V2, and MT, and compare these to measurements of the natural visual statistics of binocular disparity. The changes in tuning curve characteristics are computationally consistent with a shift in optimization goals from maximizing the information encoded about naturally occurring binocular disparities to maximizing the ability to support fine disparity discrimination. We find that a change towards tuning curves preferring larger disparities is a key driver of this shift. These results provide new insight into previously-identified differences between disparity-selective regions of cortex and suggest these differences play an important role in supporting visually-guided behavior. Our findings support a key re-framing of optimal coding in regions of the brain that contain sensory information, emphasizing the need to consider not just information preservation and neural resources, but also relevance to behavior.SignificanceA major role of the brain is to transform information from the sensory organs into signals that can be used to guide behavior. Neural activity is noisy and can consume large amount of energy, so sensory neurons must optimize their information processing so as to limit energy consumption while maintaining key behaviorally-relevant information. In this report, we re-examine classically-defined brain areas in the visual processing hierarchy, and ask whether neurons in these areas vary lawfully in how they represent sensory information. Our results suggest that neurons in these brain areas shift from being an optimal conduit of sensory information to optimally supporting perceptual discrimination during natural tasks.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3