Representation of Motion Direction in Visual Area MT Accounts for High Sensitivity to Centripetal Motion, Aligning with Efficient Coding of Retinal Motion Statistics

Author:

Kumano HironoriORCID,Uka Takanori

Abstract

The overrepresentation of centrifugal motion in the middle temporal visual area (area MT) has long been thought to provide an efficient coding strategy for optic flow processing. However, this overrepresentation compromises the detection of approaching objects, which is essential for survival. In the present study, we revisited this long-held notion by reanalyzing motion selectivity in area MT of three macaque monkeys (two males, one female) using random-dot stimuli instead of spot stimuli. We found no differences in the number of neurons tuned to centrifugal versus centripetal motion; however, centrifugally tuned neurons showed stronger tuning than centripetally tuned neurons. This was attributed to the heightened suppression of responses in centrifugal neurons to centripetal motion compared with that of centripetal neurons to centrifugal motion. Our modeling implies that this intensified suppression accounts for superior detection performance for weak centripetal motion stimuli. Moreover, through Fisher information analysis, we establish that the population sensitivity to motion direction in peripheral vision corresponds well with retinal motion statistics during forward locomotion. While these results challenge established concepts, considering the interplay of logarithmic Gaussian receptive fields and spot stimuli can shed light on the previously documented overrepresentation of centrifugal motion. Significantly, our findings reconcile a previously found discrepancy between MT activity and human behavior, highlighting the proficiency of peripheral MT neurons in encoding motion direction efficiently.SIGNIFICANCE STATEMENTThe efficient coding hypothesis states that sensory neurons are tuned to specific, frequently experienced stimuli. Whereas previous work has found that neurons in the middle temporal (MT) area favor centrifugal motion, which results from forward locomotion, we show here that there is no such bias. Moreover, we found that the response of centrifugal neurons for centripetal motion was more suppressed than that of centripetal neurons for centrifugal motion. Combined with modeling, this provides a solution to a previously known discrepancy between reported centrifugal bias in MT and better detection of centripetal motion by human observers. Additionally, we show that population sensitivity in peripheral MT neurons conforms to an efficient code of retinal motion statistics during forward locomotion.

Funder

MEXT | Japan Society for the Promotion of Science

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3